INNOVATIVE THERMAL MANAGEMENT OF FUEL CELL POWER ELECTRONICS

Kenneth J. Kelly, Desikan Bharathan *National Renewable Energy Laboratory*

Andreas Vlahinos *Advanced Engineering Solutions*

Pablo Rodriguez

Ballard Power Systems

Electric Drives and Power Conversion Division

1st International Conference on Fuel Cell Science, Engineering and Technology Rochester Institute of Technology, Rochester, NY April 22, 2003

Power Electronics Cooling

Critical Enabling Technology for Fuel Cell Vehicle and Stationary Applications

Develop a heat exchanger design to efficiently remove heat from the power module and reject it into the vehicles coolant loop with uniform cooling, minimum cost, volume and pressure drop.

Robust Optimization reusable workflow template

Background: Recent DFV Applications

Petroleum Consumption, Technical Hurdles, Transfer to Industry

Robust Designs of Fuel Cell Components

- -Thermal analysis
- -Structural analysis
- -Topology optimization
- High temperature stack

Behavioral Modeling for Power Electronics Cooling

Design for Six-sigma
Techniques for
Battery Thermal
Management

Review of Literature and Conceptual Designs

1. Pin-Finned Design

- 2. "Cook-top" serpentine flow field
- 3. "Fish bone" fins

4. Carbon Foam

5. Aluminum Extrusion with Expanded Metal Turbulator

Review of Literature and Conceptual Designs

- 1. Pin-Finned Design
- TOTAL IN THE PARTY OF THE PARTY
- 2. "Cook-top" serpentine flow field
- 3. "Fish bone" fins

- 4. C Liquid Cooled, Integrated Pin-fin heat exchanger
 - Low Cost
 - Compact
 - Effective
 - Durable

Problem Statement

Develop a workable methodology to find the optimal pin-fin geometry that:

```
Minimizes dT
```

Where:

```
      1 mm
      Pin_dia
      10 mm

      1 mm
      Pin_h
      5 mm

      1
      Nx
      15 (integer)

      2
      Ny
      50 (integer)
```

Subject to:

```
maxT < 125 °C 
dP < 20000 Pa 
(Lx-Nx*Pin_dia)/Nx > 0.5 mm (no interference in x) 
(Ly-2*Ny*Pin_dia)/(2*Ny) > 0.5 mm (no interference in y)
```

Input Parameters and Assumptions

Heat Exchanger Base and Pins - AlSiC

- Thermal conductivity (k = 150 W/mK)
- Density (ρ = 3000 kg/m³)
- Heat Capacity (C = 768 J/kg C)

Coolant - Water

- Thermal conductivity (k = 0.66 W/mK)
- Density (ρ = 983 kg/m³)
- Heat Capacity (C = 3000 J/kg C)

Boundary Conditions:

- Heat Flux $(q = 80 \text{ W/cm}^2)$
- Coolant Flow Rate ($u = 1.4 \times 10^{-4} \text{ m}^3/\text{s}$)
- Inlet Temperature: (Tin = 60 °C)
- Symmetry along the "y" plane (along flow path)

Material behavior isotropic

FEA Model – CFD Analysis of Pin Fin Design

CFD Analysis of Staggered vs. In-Line Flow

Heat Transfer Coefficient from CFD Analysis

Staggered vs. In-Line Flow

Conjugate Solution of CFD and Heat Transfer

Thermal FEA Model

Elements: 480 per pin Nodes: 653 per pin

176 pin model: 82K elements 100K nodes

Thermal Analysis

with Classical Theoretical Determination of Film Coefficients (Kreith)

Reynold's number for flow around pin fins

Nusselt number

- laminar

- transitional

- turbulent

$$Re_D = \frac{U_{\text{max}}D}{v}$$

$$Nu_D = 0.9 \, \text{Re}_D^{0.4} \, \text{Pr}^{0.36}$$

$$Nu_D = 0.35 \left(\frac{St}{Sl}\right)^{0.2} \text{Re}_D^{0.6} \text{Pr}^{0.36}$$

$$Nu_D = 0.022 \,\mathrm{Re}_D^{0.84} \,\mathrm{Pr}^{0.36}$$

Heat transfer coefficient

$$h = \frac{Nu \times k}{D}$$

Pressure Drop

$$\Delta P = f \frac{\rho U_{\text{max}}^2}{2} N$$

Maximum Temperature vs. Pressure Drop

Maximum Temperature vs. Pressure Drop

Temperature Differential vs. Pressure Drop

Temperature Differential vs. Pressure Drop

Behavioral Modeling within the CAD Environment

- Automated optimization at the design stage
- Very fast solutions and flexible geometry

 Requires closed form solutions or link to other analysis tool (CFD, FEA, etc.)

Summary and Conclusions

Computational Fluid Dynamics

- Detailed model allows flexibility
- Computationally and time intensive solutions (hours)
- Excellent for flow visualization, validation, and limited investigations

Thermal FEA with Heat Transfer Coefficients from CFD

- Allows for smaller CFD model (solution still may take hours)
- Thermal model yields solutions quickly (minutes)
- Requires CFD run for each new design configuration

Thermal FEA with Theoretical Determination of h & dP:

- Fast solutions (minutes) that can be linked with optimization techniques
- Requires closed form solution for h and dP

Behavioral Modeling within the CAD Environment

- Very fast solutions (seconds)
- Excellent for optimization
- Requires a closed form solution, or link to another analysis tool (CFD, thermal)

Summary and Conclusions

 Rapid optimization of pin fin geometry can be achieved using parametric thermal FEA with theoretical determination of heat transfer coefficients and pressure drop

 Integrated, liquid-cooled pin-fin heat exchanger was effective for achieving the target maximum temperature and pressure drop

 Achieving a uniform temperature distribution (lower dT) will require more detailed optimization of coolant flow path such as variable pin spacing

Future Directions

- Compare Analysis with Experimental Results
- Apply Probabilistic techniques to evaluate the effect of variations in
 - flow rate,
 - heat generation rates,
 - inlet coolant temperature, etc.
- Investigate other geometric alternatives
 - Pin Geometry
 - Variable pin spacing
 - Flow path
- Investigate other cooling techniques
 - Heat pipes
 - Carbon Foam
 - Di-electric Cooling